Thesis Title: Creating and Utilizing Symbolic Representations of Spatial Knowledge Using Mobile Robots Supervised
نویسندگان
چکیده
We propose a factored approach to mobile robot mapbuilding that handles qualitatively different types of uncertainty by combining the strengths of topological and metrical approaches. Our framework is based on a computational model of the human cognitive map; thus it allows robust navigation and communication within several different spatial ontologies. This paper focuses exclusively on the issue of map-building using the framework. Our approach factors the mapping problem into natural sub-goals: building a metrical representation for local small-scale spaces; finding a topological map that represents the qualitative structure of large-scale space; and (when necessary) constructing a metrical representation for large-scale space using the skeleton provided by the topological map. We describe how to abstract a symbolic description of the robot’s immediate surround from local metrical models, how to combine these local symbolic models in order to build global symbolic models, and how to create a globally consistent metrical map from a topological skeleton by connecting local frames of reference. ∗This work has taken place in the Intelligent Robotics Lab at the Artificial Intelligence Laboratory, The University of Texas at Austin. Research of the Intelligent Robotics lab is supported in part by grants from the Texas Advanced Research Program (3658-0170-2007), from the National Science Foundation (IIS-0413257, IIS-0713150, and IIS0750011), and from the National Institutes of Health (EY016089).
منابع مشابه
Creating and Utilizing Symbolic Representations of Spatial Knowledge using Mobile Robots
vii
متن کاملCooperative Control of Mobile Robots in Creating a Runway Platform for Quadrotor Landing
Multi-agent systems are systems in which several agents accomplish a mission in a cooperative manner. In this paper, a novel idea for the construction of a movable runway platform based on multi-agent systems is presented. It is assumed that an aerial agent (quadrotor) decides to make an emergency landing due to reasons such as a decrease in energy level or technical failure, while there is no ...
متن کاملA Cognitively Motivated Route-Interface for Mobile Robot Navigation
A more natural interaction between humans and mobile robots can be achieved by bridging the gap between the format of spatial knowledge used by robots and the format of languages used by humans. This enables both sides to communicate by using shared knowledge. Spatial knowledge can be (re)presented in various ways to increase the interaction between humans and mobile robots. One effective way i...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملConcurrent Object Identification and Localization for a Mobile Robot
Identification and localization of task-relevant objects is an essential problem for advanced service robots. We integrate state-of-the-art techniques both for object identification and object localization to solve this problem. Based on a multilevel spatial representation architecture, our approach integrates methods for mapping, self-localization and spatial reasoning for navigation with visu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999